
P a g e | 77

FCPIT VDS Saini

12. Basics of File Handling

12.1 Opening, reading, and writing of files

This tutorial will teach you how to read and write from a file. This requires another
standard C++ library called fstream, which defines three new data types:
Data Type Description

ofstream This data type represents the output file stream and is used to create files
and to write information to files.

ifstream This data type represents the input file stream and is used to read
information from files.

fstream This data type represents the file stream generally, and has the capabilities
of both ofstream and ifstream which means it can create files, write
information to files, and read information from files.

To perform file processing in C++, header files <iostream> and <fstream> must be included
in your C++ source file.

Opening a File:

A file must be opened before you can read from it or write to it. Either the
ofstream or fstream object may be used to open a file for writing and ifstream object is
used to open a file for reading purpose only.
Following is the standard syntax for open() function, which is a member of fstream,
ifstream, and ofstream objects.
void open(const char *filename, ios::openmode mode);

Here, the first argument specifies the name and location of the file to be opened and the
second argument of the open() member function defines the mode in which the file should
be opened.

Mode Flag Description

ios::app Append mode. All output to that file to be appended to the end.

ios::ate Open a file for output and move the read/write control to the end of the file.

ios::in Open a file for reading.

ios::out Open a file for writing.

ios::trunc If the file already exists, its contents will be truncated before opening the file.
You can combine two or more of these values by ORing them together. For example if you
want to open a file in write mode and want to truncate it in case it already exists, following
will be the syntax:

P a g e | 78

FCPIT VDS Saini

ofstream outfile;
outfile.open("file.dat", ios::out | ios::trunc);

Similar way, you can open a file for reading and writing purpose as follows:
fstream afile;
afile.open("file.dat", ios::out | ios::in);

Closing a File
When a C++ program terminates it automatically closes flushes all the streams, release all
the allocated memory and close all the opened files. But it is always a good practice that a
programmer should close all the opened files before program termination.

Following is the standard syntax for close() function, which is a member of fstream,
ifstream, and ofstream objects.

void close();

Writing to a File:
While doing C++ programming, you write information to a file from your program using the
stream insertion operator (<<) just as you use that operator to output information to the
screen. The only difference is that you use anofstream or fstream object instead of
the cout object.

Reading from a File:
You read information from a file into your program using the stream extraction operator
(>>) just as you use that operator to input information from the keyboard. The only
difference is that you use an ifstream or fstream object instead of the cin object.

Read & Write Example:
Following is the C++ program which opens a file in reading and writing mode. After writing
information inputted by the user to a file named afile.dat, the program reads information
from the file and outputs it onto the screen:
#include <fstream>
#include <iostream.h>
#include<conio.h>

int main ()
{

char data[100];

// open a file in write mode.
ofstream outfile;
outfile.open("afile.dat");

cout << "Writing to the file" << endl;
cout << "Enter your name: ";
cin.getline(data, 100);

// write inputted data into the file.
outfile << data << endl;

P a g e | 79

FCPIT VDS Saini

cout << "Enter your age: ";
cin >> data;
cin.ignore();

// again write inputted data into the file.
outfile << data << endl;

// close the opened file.
outfile.close();

// open a file in read mode.
ifstream infile;
infile.open("afile.dat");

cout << "Reading from the file" << endl;
infile >> data;

// write the data at the screen.
cout << data << endl;

// again read the data from the file and display it.
infile >> data;
cout << data << endl;

// close the opened file.
infile.close();
return 0;

}

When the above code is compiled and executed, it produces the following sample input
and output:
$./a.out
Writing to the file
Enter your name: Zara
Enter your age: 9
Reading from the file
Zara
9

Above examples make use of additional functions from cin object, like getline() function to
read the line from outside and ignore() function to ignore the extra characters left by
previous read statement.

File Position Pointers:
Both istream and ostream provide member functions for repositioning the file-position
pointer. These member functions are seekg ("seek get") for istream and seekp ("seek put")
for ostream.

The argument to seekg and seekp normally is a long integer. A second argument can be
specified to indicate the seek direction. The seek direction can be ios::beg (the default) for
positioning relative to the beginning of a stream,ios::cur for positioning relative to the
current position in a stream or ios::endfor positioning relative to the end of a stream.

The file-position pointer is an integer value that specifies the location in the file as a
number of bytes from the file's starting location. Some examples of positioning the "get"
file-position pointer are:

P a g e | 80

FCPIT VDS Saini

// position to the nth byte of fileObject (assumes ios::beg)
fileObject.seekg(n);

// position n bytes forward in fileObject
fileObject.seekg(n, ios::cur);

// position n bytes back from end of fileObject
fileObject.seekg(n, ios::end);

// position at end of fileObject
fileObject.seekg(0, ios::end);

12.2 Error handling during files operation
Sometimes during file operations, errors may also creep in. For example, a file being opened
for reading might not exist. Or a file name used for a new file may already exist. Or an
attempt could be made to read past the end-of-file. Or such as invalid operation may be
performed. There might not be enough space in the disk for storing data.

To check for such errors and to ensure smooth processing, C++ file streams inherit 'stream-
state' members from the ios class that store the information on the status of a file that is
being currently used. The current state of the I/O system is held in an integer, in which the
following flags are encoded :

Name Meaning

eofbit 1 when end-of-file is encountered, 0 otherwise.

failbit 1 when a non-fatal I/O error has occurred, 0 otherwise

badbit 1 when a fatal I/O error has occurred, 0 otherwise

goodbit 0 value

Function Meaning

int bad()
Returns a non-zero value if an invalid operation is attempted or any unrecoverable
error has occurred. However, if it is zero (false value), it may be possible to recover
from any other error reported and continue operations.

int eof() Returns non-zero (true value) if end-of-file is encountered while reading; otherwise
returns zero (false value).

int fail() Returns non-zero (true) when an input or output operation has failed.

P a g e | 81

FCPIT VDS Saini

C++ Error Handling Functions

There are several error handling functions supported by class ios that help you read and
process the status recorded in a file stream. Following table lists these error handling
functions and their meaning :

The above functions can be summarized as eof() returns true if eofbit is set; bad() returns
true if badbit is set. The fail() function returns true if failbit is set; the good() returns true
there are no errors. Otherwise, they return false.

These functions may be used in the appropriate places in a program to locate the status of a
file stream and thereby take the necessary corrective measures. For example :

:
ifstream fin;
fin.open("master", ios::in);
while(!fin.fail())
{

: // process the file
}
if(fin.eof())
{

: // terminate the program
}
else if(fin.bad())
{

: // report fatal error
}
else
{

fin.clear(); // clear error-state flags
:

}
:

C++ Error Handling Example
Here is an example program, illustrating error handling during file operations in a C++
program:

#include<iostream.h>
#include<fstream.h>
#include<process.h>
#include<conio.h>
void main()
{

clrscr();
char fname[20];

int good()
Returns non-zero (true) if no error has occurred. This means, all the above functions
are false. For example, if fin.good() is true, everything is okay with the stream named
as fin and we can proceed to perform I/O operations. When it returns zero, no
further operations can be carried out.

clear() Resets the error state so that further operations can be attempted.

P a g e | 82

FCPIT VDS Saini

cout<<"Enter file name: ";
cin.getline(fname, 20);
ifstream fin(fname, ios::in);
if(!fin)
{

cout<<"Error in opening the file\n";
cout<<"Press a key to exit...\n";
getch();
exit(1);

}
int val1, val2;
int res=0;
char op;
fin>>val1>>val2>>op;
switch(op)
{

case '+':
res = val1 + val2;
cout<<"\n"<<val1<<" + "<<val2<<" = "<<res;
break;

case '-':
res = val1 - val2;
cout<<"\n"<<val1<<" - "<<val2<<" = "<<res;
break;

case '*':
res = val1 * val2;
cout<<"\n"<<val1<<" * "<<val2<<" = "<<res;
break;

case '/':
if(val2==0)
{

cout<<"\nDivide by Zero Error..!!\n";
cout<<"\nPress any key to exit...\n";
getch();
exit(2);

}
res = val1 / val2;
cout<<"\n"<<val1<<" / "<<val2<<" = "<<res;
break;

}

fin.close();

cout<<"\n\nPress any key to exit...\n";
getch();

}

Let's suppose we have four files with the following names and data, shown in this table:

File Name Data

myfile1.txt
10
5
/

myfile2.txt
10
0
/

P a g e | 83

FCPIT VDS Saini

myfile3.txt
10
5
+

myfile4.txt
10
0
+

Now we are going to show the sample run of the above C++ program, on processing the
files listed in the above table. Here are the four sample runs of the above C++ program,
processing all the four files listed in the above table. Here is the sample output for the
first file.

This output is for the second file

This is for the third file

This output produced, if the fourth file is processed.

